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Absorbing boundary conditions are often employed in time-dependent mean-field calculations to cope with
the problem of emitted particles which would otherwise return back onto the system and falsify the dynamical
evolution. We scrutinize two widely used methods, imaginary potentials and gradual attenuation by a mask
function. To that end, we consider breathing oscillations of a 16O nucleus computed on a radial one-
dimensional grid in coordinate space. The most critical test case is the computation of resonance spectra in the
�linear� domain of small amplitude motion. Absorbing bounds turn out to provide a reliable alternative to fully
fledged continuum random phase approximation �RPA� calculations, although rather large absorbing bounds
are required to simulate reliably well continuum conditions. We also investigate the computation of observ-
ables in the nonlinear domain. This regime turns out to be less demanding. Smaller absorbing margin suffice to
achieve the wanted absorption effect.
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I. INTRODUCTION

A starting-point, from a microscopic point of view, to the
solution of quantum many-body problems is the mean-field
approach. Depending on the system of interest, the mean
field might take the form of, for example, Hartree-Fock, a
density functional or the local density approximation. Each
of these approaches can include time-dependence to yield
time-dependent mean field �TDMF� equations. A code which
solves TDMF equations gives one access to a laboratory in a
computer, in which ones many-body objects of interest �e.g.,
nuclei, atoms, molecules, or metal clusters� can interact with
each other or with external fields.

Practical realizations of TDMF are often implemented us-
ing coordinate space grids, with the coupled nonlinear
TDMF equations solved using finite difference techniques. A
particular numerical issue that arises in such codes is to deal
with the boundaries. For many dynamical processes of inter-
est, particles will be emitted from the system, which means
that the wavefunctions representing them will reach the
boundary of the grid. Typical boundary conditions, which
can be implemented without computational expense are re-
flecting and periodic boundary conditions. In the first case,
outgoing particle flux is reflected back into the system, and
in the second it reappears on the other side of the grid. This
is essentially never the physical situation one is interested in,
and will lead to artefacts in the physical results of the calcu-
lation. In the case of nuclear heavy-ion collisions, for ex-
ample, the interference with the reflected particle flux dis-
turbs the motion of the reaction partners.

The present work seeks to explore some of the problems
associated with boundary conditions in TDMF applications.
As a test case, we consider the breathing dynamics of 16O in
various dynamical regimes. In the linear regime, we scruti-

nize the description of nuclear giant resonance spectra. In the
nonlinear regime, we check particle emission as one typical
observable. To highlight the importance of absorbing bounds,
and the wide applicability of the time-dependent mean-field
method we also consider the case of two colliding 16O nu-
clei.

Nuclear giant resonances are highly collective excitations
which carry a lot of interesting information about nuclear
structure and dynamics. For a recent review of theoretical
and experimental work on giant resonances in general, see
�1�. The resonances occur above neutron emission threshold,
in all regions of the nuclear chart, and at various channels of
multipolarity, L, spin, S and isospin T. Being above thresh-
old, all giant resonances are heavily damped. Their width
arises in three ways �2,3�: The Landau width, due to frag-
mentation, i.e., the spreading of the initial multipole excita-
tion over the many single-particle excitations in energetic
vicinity �giant resonances are coherent sums of single par-
ticle excitations caused by one-body operators�. The decay
width is caused by the emission of particles into the con-
tinuum, and the collisional width by the coupling of the
1p-1h �one particle, one hole� states with nearby higher or-
der states �2p-2h, 3p-3h, and so on� in the compound
nucleus. The TDMF approach to nuclear giant resonances
begins with a static Hartree-Fock calculation to define the
ground state �4�. Excitations are then generated using an ex-
ternal perturbation in a time-dependent Hartree-Fock
�TDHF� approach. Although collective, they stay generally
in the linear regime of small amplitude motion. This allows
one to linearize TDHF yielding the random phase approxi-
mation �RPA� �5,6�, which is a standard treatment of the
excitation �7–10�, sometimes reaching out to more sophisti-
cated beyond-RPA techniques �11,12�. For nonsymmetric
ground states as, e.g., in deformed nuclei, the conceptually
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simpler full TDHF treatment remains competitive with lin-
earized versions and has become increasingly used �13–16�.
For treating dynamics in the nonlinear regime, full TDHF is
anyway compulsory. A similar situation is found also in clus-
ter physics where the dynamical calculation of resonance ex-
citations is called the time-dependent local-density approxi-
mation �TDLDA�. For an extensive review �see �17��. The
considerations of this paper are also relevant to these appli-
cations in atomic, molecular and cluster physics.

Using standard reflecting or periodic boundary conditions
in TDHF or RPA results in an artificial discretization of the
excitation spectrum. From a physical point of view, it means
that one is able to describe the gross structure of spectra
including the Landau width. A proper description of con-
tinuum structure, in particular of the decay width, requires
absorbing or open boundary conditions. Several techniques
have been employed for nuclear continuum RPA �18–23�.
Only a subset of such methods is applicable to fully fledged
TDHF, or TDLDA. The most widely used methods there are
imaginary absorbing potentials, which have been applied in
nuclear and atomic physics �14,25�, and multiplicative masks
applied to damp the wavefunctions �26�. These tools remove
particles impinging on the surface of the box from further
computation and thus approximate open boundaries. In the
linear regime, they provide an interesting alternative to the
often very elaborate continuum RPA techniques. It is the aim
of this paper to investigate the quality and expense of the
imaginary potential and multiplicative mask approach to ab-
sorbing boundary conditions in TDHF. For the linear re-
sponse regime, we also compare with simulation of the con-
tinuum through driect smoothing techniques in the spectral
analysis. For these calculations, we employ a one-
dimensional code �for radial motion� in order to use a huge
variety of grid sizes for extensive tests. A confirmation is
made of the broad usefulness of absorbing boundary condi-
tions by looking also at a full three-dimensional �3D� TDHF
calculation of a collision of two 16O nuclei.

We shall, in Sec. II, briefly summarize the TDHF ap-
proach and its practical implementation. Our giant resonance
test case is described in Sec. III, and the issues related to
hard boundary conditions detailed in Sec. IV. In Sec. V, we
make the analysis of absorption on the TDHF calculations,
and in Sec. VI appears the study of smoothing in the spectral
analysis, and a summary of all results for the linear case.
Considerations of nonlinear breathing-mode excitations are
given in Sec. VII, with a discussion of collisions in Sec. VIII.
Section IX concludes.

II. TIME-DEPENDENT HARTREE-FOCK

Nuclear time-dependent Hartree-Fock calculations belong
to the realm of the time-dependent density functional theory
�27� where a many-body system is described in terms of
single-particle wavefunctions �� and the local densities and
currents build therefrom. The equations-of-motion are de-
rived variationally from a given energy-density functional
�4�. They read in quite general fashion

i��̇� = ĥ�� �1�

where ĥ is the Hartree-Fock Hamiltonian which itself de-
pends on the actual wavefunctions via the densities. It thus

constitutes a nonlinear equation. Given an initial condition,
����r , t=0��, Eq. �1� determines all �� at all times. This
time-dependent mean-field theory naturally includes the Lan-
dau width and can, in principle, also describe the decay
width. The Landau width comes from the underlying single-
particle spectrum, which is inherent in the Hartree-Fock cal-
culations. We will always see a fragmentation in the spec-
trum due to the Landau width, but the correct calculation of
the decay width will depend on the correct treatment of the
outgoing particle flux at the boundary of the box. It is the
decay width with which this paper is concerned.

There are several time stepping schemes for the solution
of the TDHF �or TDLDA� equations. We use here the series
expansion of the exponential evolution �28�. The TDHF
equations are solved in practice in two steps. First, we per-
form a preliminary half-time step

�̃��r� = exp�− iĥ�t��t/2����r,t� . �2a�

This is used to build an approximation to the mean-field h̃ at
mid-time t+�t /2 in standard manner

��̃�� Þ �̃, j̃, . . . Þ h̃ .

This then is used to perform the full step

���r,t + �t� = exp�− ih̃�t����r,t� . �2b�

The exponential is expanded in a power series and truncated
at fourth order

exp�− iĥ�t� � �
n=0

4
�− i�t�n

n!
ĥn. �2c�

This choice has been found to be a sensible compromise
between computational expense and stability, when com-
bined with a suitable step size. In this study we have found a
step size of �t=0.25 fm/c to be adequate when combined
with the fourth-order Taylor Series expansion �2c�. Unless
stated otherwise, this time step is used in all calculations
presented. The repeated application of the time evolution op-
erator gives a time series of wavefunctions and derived quan-
tities. The quality of the propagation is tested against norm
and energy conservation �which applies for reflecting bound-
aries�. The norm and energy are both conserved over the
whole observation time within 10−5. This figure can be im-
proved �or worsened� deliberately by adjusting the time
step/or and number of terms retained in the Taylor Series
expansion �2c�.

III. TEST SETUP

As a practical application, the case of isoscalar monopole
vibrations in 16O is studied, using the Skyrme parameteriza-
tion SkM* �29�. Skyrme forces are effective nuclear interac-
tions which reproduce the ground and certain excited state
properties of nuclei across the periodic table �4�. They are
generally fitted to basic ground state properties �masses, ra-
dii,¼�, and usually also including information from nuclear
matter. Many of them also provide a good description of
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giant resonances, particularly for heavy nuclei while being
less perfect for isovector modes in small nuclei �9,30�. Note
that in the present paper we are not so much interested in a
detailed comparison with experiment, as in an exploration of
numerical issues. Therefore, we have chosen such a light
nucleus to allow for widespread variations of the numerical
conditions.

To create a monopole giant resonance, one must apply a
suitable external perturbation. In all calculations presented
here, the usual isoscalar monopole excitation operator

F�r� = r2, �3�

is used to both create and measure the oscillations. The ex-
citation is applied with a Gaussian time profile:

Vext�r,t� = �extF�r�fext�t� , �4a�

fext�t� = exp	−
�t − �0�2

�wid
2 
 . �4b�

with parameters

�ext = 0.01 MeV r−2, �0 = 5 fm/c, �wid = 1 fm/c.

�4c�

This short time-span of the external perturbation simulates
the brief impinging of a nuclear probe. It has a spectral width
of about 200 MeV and thus ensures that oscillations of all
frequencies in the resonance range are excited with equal
weight.

The spatial grid is set up with grid spacing �r=0.3 fm.
The number of grid points, and with it the box size, is varied
as a crucial parameter in the numerical study.

IV. GENERAL FEATURES WITHOUT ABSORPTION

The isoscalar giant monopole resonance in 16O lies at
about 23 MeV which is of order 10 MeV above the con-
tinuum threshold. As such, the emitted nucleons have an av-
erage kinetic energy of about 10 MeV, corresponding to a
mean velocity of v�0.14 c. The initial pulse �4� will thus
release a bunch of nucleons which then travels along with
that velocity towards the bounds of the box. Reflecting
boundary conditions turn the bunch back to the nuclear cen-
ter where it will reappear after a typical echo time

Techo = 2Rbox/v � 14Rbox/c. �5�

The echo and its dependence on the box should be visible in
the recorded monopole signal. We can confirm this and see
the effect of hard �=reflecting� boundary conditions by ex-
amining the echo delay time in the monopole response.

Figure 1 shows the amplitude of monopole oscillations as
a function of time for various box sizes. In all three cases, the
time signal is the same at the outset, since the outgoing flux
did not have yet the time to reach the boundary. The ampli-
tude of the oscillations decay in an exponential way, and
would in principle die down to zero, except that there is that
echo from reflux of nucleons reflected back from the bounds.
The time it takes for this to happen depends on the radius,

Rbox of the box as estimated in Eq. �5�. Therefore, for Rbox
=30, 60, and 120 fm, delays of 400, 800, and 1600 fm/c are
the expected values in broad agreement with Fig. 1. Since
the outgoing particle flux contains components traveling at
different velocities, once can see that the shape of the return-
ing echo looks different for different box sizes, and in par-
ticular is the more stretched the larger the box.

This echo is, of course, artificial. It allows standing waves
to set up in the box, which discretize the spectrum �13�. In
principle one could allow the box size to grow without limit,
and obtain a closer and closer approximation to the con-
tinuum result, a strategy which is discussed in Sec. VI B.
One can see from the top frame in Fig. 1 that the echo may
be delayed arbitrarily, delivering arbitrary resolution. But
one is bound by limits of computational time, and a finite
box size must be used; for example, the 1200 fm box of Fig.
1 is too large for a three-dimensional calculation. One can
estimate the necessary size of a �reflecting� box according to
the wanted energy resolution. An unperturbed �by the echo
signal� observation time of Tobs allows an energy resolution
of about 	 /Tobs, and using Eq. �5� one can establish an esti-
mate in terms of box size for the considered test case


�echo =
	

Tobs
=

v	

2Rbox
�

0.1c

Rbox
. �6�

For example, a Tobs�4000 fm/c observation yields a
resolution of 
�echo�0.14 MeV and requires a box of
Rbox�300 fm.

FIG. 1. Monopole oscillation in the time domain for several box
sizes.
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V. ABSORBING BOUNDS

When the flux reaches the edge of the box, it should in
principle continue out as if the boundary were not there. For
a finite box, this effect can be simulated using some kind of
absorbing boundary. The absorption of the outgoing wave, or
suppression of the echo will never be quite perfect, and the
study of the optimal ways of applying these techniques is
discussed here. The method for quantifying the quality of an
absorbing algorithm will in this section simply be the ampli-
tude of the echo.

The two methods of simulating the absorbing boundary
conditions considered in this study are the use of an imagi-
nary potential and a masking function. For the first option, a
linear optical potential is used �14�

Vopt = − iWopt��r − Rbox��r − Rbox� . �7�

This potential is added to the mean-field Hamiltonian ĥ in all
time steps. Note that the margin carrying the optical potential
is added outside the original numerical box, i.e., outside Rbox.
A certain number of absorbing points Nabs are used while
keeping the same grid spacing. The quality of absorption will
depend on the size of this absorbing margin. The masking
function, on the other hand, supplements the time step �2� by
one masking step

�� → �� cos		

2

r − Rbox

Rabs

p

�8�

applied after the final sub-step �2b�. This masking function
involves the radial distance r= �r� and is appropriate for the
radial 1D problem treated here. Other geometries require
other masks, see, e.g., �31�. The Rabs=Nabs�r is the added
absorbing margin and Nabs is the number of grid points over
which the masking is applied. The �r is the same radial grid
spacing as used in the interior.

Both have much in common. In fact, one can map the
masking function into an equivalent optical potential. For
simplicity, we assume a mere first-order expansion of the

exponential step, i.e., 1− i
tĥ. In this case the masking op-
eration can be achieved by employing an effective optical
potential

Vopt
�eff� = −

i


t
�1 − cos		

2

r − Rbox

Rabs

p � − i

p


t
		

2

r − Rbox

Rabs

2

.

�9�

It is obvious that the step size 
t plays a role: The shorter the
time step the stronger the optical potential. It is the combi-
nation p /
t which determines the effective damping strength.

Figure 2 shows an example of monopole oscillations com-
puted with absorbing bounds of type �8� compared with a
result from reflecting bounds using the same box size. One
sees a much reduced and somewhat delayed echo. The de-
layed echo is explained by the fact that the absorbing bounds
are more efficient for fast particles such that the reflected
wave has a higher content of slow velocities. Moreover, one
sees also that the absorption is by no means perfect in that a
visible amount of back-flow is still seen. We now need to
work out optimal damping conditions for both methods by

systematically varying the parameters. In order to simplify
the analysis, we characterize the quality of absorption by one
number: The maximum amplitude of the echo.

Figure 3 shows the results of series of calculations for the
maximum echo amplitude as a function of the damping
strength Wopt for the optical potential or the power p for the
masking function. Two different numbers of extra absorbing
grid points, Nabs, are used and the size of the time step is also
varied in case of the masking function �lower panel�. Clearly
in either prescription the larger absorbing margin performs
better than the smaller, and the best echo reduction is about
the same. With Nabs=20, the reduction in amplitude ap-
proached one order of magnitude. In the Nabs=100 case,

FIG. 2. Monopole oscillation amplitude in the time domain. The
lower panel shows the case of hard reflecting boundary conditions,
the upper panel shows a masking absorption with 20 extra points,
and a power p=0.04.

FIG. 3. Maximum echo in monopole amplitude as a function of
the number of absorbing points Nabs for the two types of boundary
condition considered. Upper panel: Results using the optical poten-
tial �7�. Lower panel: Results using the masking function �8�. The
faint dotted horizontal line show the amplitude without absorbing
bounds for comparison.
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around two orders of magnitude reduction in the echo ampli-
tude was found.

In both cases, the absorption shows a weak minimum in
dependence on the damping parameter. Too small damping
leaves an appreciable quantity of flux reflected back, whereas
too large absorption causes reflection from the steep optical
potential at the beginning of the absorbing region. A best
compromise is found in between. It is seen that, in the case
of an imaginary potential, the optimum strength Wabs de-
pends on the number of absorbing points used. For the mask-
ing function with given time step 
t, the preferred value for
p is quite insensitive to Nabs, although altering the time step
moves the minimum which can be understood from the map-
ping �9� where the effective damping turns out to be p /
t. In
both cases, the choice of the optimum working point is not
awfully critical. One can �and one should� calibrate the
method once for a broad set of applications within a given
numerical setup.

VI. TEST CASE LINEAR RESPONSE

A. The principles of spectral analysis

The most important physical observable associated with
giant resonances is the strength function. In the case of the
isoscalar giant monopole resonances considered in this work,
this corresponds to the electric monopole strength associated
with a transition from the nuclear ground state to the giant
resonance, as a function of energy. The strength function of

an observable F̂ is defined in general as

S�E� = −
1

	
lim

→0

Im�0�F̂
1

H − E + i

F̂�0� , �10�

where Im stands for the imaginary part. It can be computed
with TDHF and spectral analysis as follows �24�: One starts
the dynamical evolution at t=0 from the mean-field ground
state, applies the short pulse �4�, and measures the F-signal
over time

F�t� = �
�

����t��F̂����t�� . �11a�

At the end, one performs a Fourier transformation into the
frequency domain

F̃��� = �
0

�

dtei�tF�t� �11b�

and similarly for the time profile of the excitation function

f�t�→ f̃���. The strength function is then finally

SF��� = −
1

	
Im� F̃���

f̃���
� . �11c�

Note that the spatial form of the function F�r , t� is to be
exactly the same in the excitation �4� and in the analysis �11�.
In the test case here, we use the isoscalar monopole �3�.

The actual TDHF calculations stop, of course, at some
finite final time Tfin and the data are sampled on a discrete
equidistant mesh t=
t. We thus replace in practice the
Fourier integral by the Fourier series

F̃��k� =

t

2
F�0� + �

=1

Nfin


tei�ktF�t� ,

�k = k
	

Tfin
, k � �0, . . . ,Nfin� , �12�

where Tfin=Nfin
t. This defines the strength on a mesh �k in
frequency space. The maximal spectral resolution achievable
on the mesh is �	 /Tfin. For example, a simulation time of
Tfin=8000 fm/c yields a spectral mesh spacing of 0.07 MeV.
An example of such a strength function is shown in Fig. 4. It
is taken from the Fourier transform of a signal in which a
1200 fm box was used along with an observation time of
8192 fm/c �the first half was shown in the uppermost panel
in Fig. 1�, leading to a situation in which the outgoing flux
has not yet reached the boundary. The pattern looks already
quite realistic as compared to typical experimental strength
distributions, although it is missing the additional contribu-
tion from the collisional width which is beyond the capabili-
ties of a mean-field theory, but which is not so large for the
isoscalar modes, particularly the monopole �3�. Most struc-
tures are very soft indicating a typical decay wdth of about
1 to 2 MeV. Note the sharp spike at 30 MeV. This is a
bound 1ph state �the 1s→2s transition� embedded in the
continuum. This figure, computed very carefully on a huge
numerical box and sampled over a long time interval, will
serve as a benchmark for our further considerations.

B. Filtering in the time domain

The spectral analysis thus far is unambiguous if the signal
has fully died down at the end, i.e., F�Tfin�=0. In more prac-
tical calculations, however, one uses smaller boxes and
makes use of absorbing boundary conditions. Since the ab-
sorption is not perfect, one obtains finite signals throughout
due to the echoes. The resulting forced cutoff at Tfin with
finite signals at the end of the interval gives rise to artefacts
in the spectra �32�. One has to apply some windowing to
produce smooth strength distributions. We use a windowing
in the time domain multiplying the signal with a smooth
cut-off function as

FIG. 4. The continuum strength function for the isoscalar mono-
pole resonance in 16O with Skyrme force SkM*. A 1200 fm box
was used, and an observation time of 8192 fm/c, so that the bound-
ary was not reached by the outgoing flux.
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F�r,t� → F�r,t�cos	 t	

2Tfin

Nfilt

�13�

and with even cut-off powers Nfilt. This filtering function has
the property that it dampens the effective signal to approach
a zero final value rapidly in a most smooth manner �vanish-
ing derivatives up to order Nfilt−1�. It approaches a Gaussian
for large values of Nfilt. The variation of the filtering strength
Nfilt allows to vary the full width at half maximum �FWHM�
of the effective signal. One has approximately

FWHM = Tfin� 2

Nfilt
. �14�

The smoothing of the spectra by forced premature extinction
of the signal has the price that one loses some spectral reso-
lution. It now becomes

��
2	

FWHM
= �2Nfilt

	

Tfin
. �15�

As we will see, the deliberate sacrifice of resolution is nec-
essary to provide a reasonable interpretation of the spectra in
case of no or insufficient absorption. We, therefore, prefer to
call �� a smoothing width. An example for filtering strength
and related FWHM as well as smoothing widths is given in
Table I. In practice, we find that mainly the final FWHM
counts in the achieved spectral pattern. It is then more effi-
cient to use a low filtering strength of typically Nfilt=2 or 4
with correspondingly short simulation time Tfin.

Figure 5 shows strength functions in the absence of any
absorbing boundary conditions. Each panel stands for one
particular choice of box size and compares different folding
strengths Nfilt, and accordingly different folding widths as
tabulated in Table I. In the case of the smallest spectral

smoothing ��=0.05 MeV, one sees the sharp discrete spec-
trum that occurs in the absence of absorbing bounds. These
occur at the frequencies of the RPA eigenmodes in the phase
space given by the finite box. As the size of the box is in-
creased, as seen in the different panels of Fig. 5 the increased
density of states in the phase space is reflected in the in-
creased number of eigenmodes appearing in accordance with
the spectral density of single particle states in a spherical
potential well.

Enhancing the filtering strength, i.e., increasing the
smoothing width ��, changes the spectrum to a smother
pattern. Insufficient filtering leaves some oscillations about
the wanted continuum strength. Such oscillations could eas-
ily be misinterpreted as detailed fragmentation structures in
the spectra. One has to make sure that the smoothing width

� is larger than the �artificial� level spacing in a finite
spherical well which we we can read off in the energy range
around 20 MeV approximately as �E=3 and 0.8 MeV for
the box sizes Rbox=15 and 60 fm, respectively. For the
smaller box size of 15 fm, only the the largest smoothing
width of ��=3.2 guarantees wiping out all artifacts. With
this largest spreading, the strength is close to the continuum
result, but lacks the finer points of its structure as, e.g., the
spike at 30 MeV. This is due to the insufficient information
obtained from the small phase space available to the dis-
cretized calculation in small boxes, compared to the con-
tinuum calculation.

In the case of the larger, 60 fm, box shown in the right
two panels of Fig. 5, the ��=0.8 MeV spreading is already
sufficient to smooth the discretized spectrum to resemble the
continuum case since the discrete peaks are closer in energy
than in the 15 fm case.

C. Competition between filtering and absorption

We thus have introduced two basically different ways to
simulate the smooth spectral distribution of strengths above
emission threshold, the absorbing boundary conditions and
strong spectral filtering. We will investigate in this section
the combination of both methods, their cooperation or com-
petition. Having ascertained the optimum values for the pa-
rameters Wabs and p associated with the linear absorbing po-
tential and masking function, respectively �see Fig. 3�, we
select these optimal values in each case, and study the effect
of varying the number of absorbing points, Nabs, the box size,
Rbox and the smoothing width ��.

Figure 6 repeats the analysis of Fig. 5, except that an extra
20 absorbing points carrying the optical potential are used

TABLE I. The relationship between the power of the cosine
mask applied to the time signal, and the equivalent folding width
��.

Nfilt 2 8 32 128 512 2048 8192

FWHM/Tfin 1
1

2

1

4

1

8

1

16

1

32

1

64

FWHM �fm/c� 16384 8193 4096 2048 1024 512 256

�� �MeV� 0.05 0.1 0.2 0.4 0.8 1.6 3.2

FIG. 5. Strength functions for
calculations without absorption.
Each panel collects results for a
single box size, as indicated, for
various folding widths ��. Note
that the ��=0.05 results go well
beyond the y-axis range.
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beyond the end of the box. One immediately sees that the
sharp peaks of the lightly filtered spectra ���=0.05 MeV�
are dramatically reduced and smoothed out, somewhat like
the ��=0.8 MeV curve in Fig. 5 without the imaginary ab-
sorbing potential. This is not surprising since the effect of the
imaginary potential is to make the eigenmodes of the box
complex, and hence damped. In spite of the dramatic reduc-
tion, there remain still sizeable oscillations which leave the
pattern far from the goal. The small smoothing of 0.8 MeV
improves a lot, but still leaves some artifacts for the 20 fm
box. Only the largest smoothing finally helps here, however,
at the price of overriding true structure in the spectrum, simi-
lar to with the case of no absorption. For the 60 fm box, the
moderate smoothing with 0.8 MeV provides almost perfect
agreement with the wanted spectrum.

We have seen up to now that larger smoothing widths
allow approaching smooth spectra more easily. Too large a
width, however, wipes out wanted physical structures. It
seems that the largest acceptable smoothing is 0.8 MeV for
the present test case. We will have a closer look at that
choice. Choosing a fixed ��=0.8 MeV, Fig. 7 explores the
effect of varying the number of absorbing points, Nabs, for
two different box sizes. Without absorption, only even larger
boxes would deliver a satisfying result. Increasing absorption
allows dealing with smaller boxes and yet yields acceptable
results. With Nabs=20 a box of 60 fm suffices, and with
Nabs=100, we can step down to a box of 30 fm �not shown
here� while reproducing the essential structures of the spec-
trum. The step from Nabs=0 to Nabs=20 constitutes a substan-
tial gain in expense as we can give up 200 true grid points
�from Rbox=120 fm down to 60 fm� while adding only 20
points for the absorbing margin. The next step to Nabs=100

does not gain as much, since we give up 100 true points and
add another 80 absorbing points.

D. Summary of times and energies

In this section, we summarize briefly the key quantities
for the analysis of resonance spectra in the particle con-
tinuum. Table II gives an overview. The average velocity of
emitted nucleons v̄ depends on the average resonance energy
Eres relative to the emission threshold Ethresh. It determines
the decay width �decay, the level spacing 
�box of the �artifi-
cial� discretization of the box, and the echo time Techo. Note
that 
�box accounts for the level spacing of the single
nucleon states in the pseudo-continuum. The actual spacing
between 1ph states looks much denser due to the overlay of
states related different hole states. But the spectral resolution
is set by the density of continuum states as quantified in
terms of 
�box. The decay width, in turn, sets the scale for
the wanted spectral resolution �� of the analysis. This, on
the other hand, has to overcome the pseudo-discretization of
the continuum in case that we work without absorbing
bounds and rely fully on the spectral smoothing by window-
ing. The scales are then set by

�decay � �� � 
�box. �16�

The �� is tuned by the simulation time Tfin in combination
with the filtering strength Nfilt. As finally only the net FWHM
counts, it is most efficient to use a low Nfilt=2 or 4 and to
thus have the shortest possible Tfin. This holds with and with-
out absorbing bounds. The second inequality in condition
�16� applies to the case without absorbing bounds. It deter-
mines the minimum box size Rbox required for that resolu-

FIG. 6. Strength functions as Figure 5, but with Nabs=20.

FIG. 7. Strength functions with and without absorbing bounds. Each panel collects results for a given box size, as labeled, for a range
of Nabs.
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tion. Invoking absorbing boundary conditions allows to use
smaller box sizes than required by the above condition. A
reduction by a factor of two was found to be conceivable
with Nabs=20 extra grid points in the absorbing margin, and
a factor four with Nabs=100. The conceptually simplest, but
computationally most expensive, way to produce a clean
spectrum is to chose the box so large that the echo time Techo
exceeds safely the decay time of the resonance and to per-
form straightforward spectral analysis with the then cleanly
damped time signal.

Note that this analysis is based on producing as authentic
a spectrum from the TDHF equations as possible. This, by
definition, omits the width due to collisions. Inclusion of the
collision width will actually soften the above criteria, since it
contributes extra broadening and helps wash out artefacts.

VII. TESTS IN THE NONLINEAR DOMAIN

A major motivation for development and application of
absorbing boundary conditions comes from the realm of non-
linear mean-field dynamics. For the original atomic physics
case see, e.g., �25,26�. The quest for good absorption persists
also for heavy-ion dynamics. Violent collisions will always
be accompanied by nucleon emission. One has to prevent
those emitted nucleons from falling back onto the reaction
zone. We will investigate the performance of absorbing

bounds in the nonlinear regime. Our test cases are the large
amplitude oscillation of 16O as induced by short force pulses
typically occuring in hefty collisions, and an actual collision
between two 16O nuclei. Many observables in the nonlinear
domain are related to particle emission as, e.g., angular dis-
tribution, kinetic energy distribution, net ionization �17�. We
consider as one such observable the ionization from strong
breathing oscillations.

We simulate a very short force pulse by initial excitation
with a radial boost �→exp�ipboostr

2��. The radial momen-
tum pboost regulates the strength of the excitation. The energy
imprinted to the system through the boost will be removed to
a large extent by particle emission. We measure the average
total emission as the loss of the total normalization Nesc�t�
=�d3r��r , t�−N�t=0�. One can also resolve in detail the par-
ticle loss from each single particle state separately as N��t�
=�d3r����r , t��2: With some combinatorial analysis, one can
compute from that the detailed probability P�n , t� to find the
state with n emitted particles �33,34�. We find in our tests
again the equivalence between the imaginary potential
method �7� and the masking function technique �8�. Thus we
will show only results for the imaginary potentials.

Figure 8 shows the total emission finally achieved as
function of the boost strength for a variety of absorbing mar-
gins. The results do not depend so sensitively on the size of
the margin for this global observable. This shows that gross
effects in the nonlinear regime can very well be estimated
with rather inexpensive small absorbing margins, which is
common practice in most of these calculations.

Figure 9 shows the more detailed emission probabilities
finally achieved, i.e., P�n , t→��. Here we see slightly more
sensitivity. The smallest margin shows small but visible de-
viations. The three larger margins have already well con-
verged. That is still much more robust than in the extremely
critical linear response regime.

Figure 10 shows as another detail the total emission as
function of time. Here we see again somewhat more sensi-
tivity than in the global final value of Fig. 8. The qualitative
pattern are still reproduced for any margin. In particular, we
see that all margins are capable of final absorption and thus
suppressing the unwanted rebounce. But a more detailed
analysis will always require the larger margins.

TABLE II. Compilation of key quantities in estimating strength
functions in the continuum. The second column contains the general
formal relation while the third column exemplifies it for the present
test case.

average velocity v̄ c�2
Eres − Ethresh

mc2 0.14 c

decay width �decay

�̄

2Rnucl
1.4 meV

box level spacing 
�box

�v̄	

2Rbox

40 MeV fm

Rbox

spectral resolution ��

2	�

FWHM

time window FWHM Tfin� 2

Nfilt

echo time Techo

2Rbox

v̄

14Rbox

c

FIG. 8. Total number of emitted nucleons after excitation by an
extremely short pulse �boost� of varying strength. The boost
strength is given in terms of radial momentum in units of fm−2. Test
case is 16O computed with the force Skyrme M* in a radial box of
30 fm. The number of absorbing points Nabs is varied as indicated.
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In any case, we find that well adjusted absorbing bounds
are a very efficient and reliable method in the domain of
nonlinear dynamics. They are compulsory to avoid artefacts
from reflected particle flow. On the other hand, rather afford-
able small margins suffice in that case. This regime is thus
much different from the linear response where rather large
margins are required for quantitative success and where al-
ternatives �although not cheap either� exist.

VIII. NUCLEAR COLLISIONS

To highlight the importance of absorbing bounds in non-
linear applications of TDHF, and to accentuate their wide
application, we have also studied collisions. As a test we
again use the 16O nucleus, this time colliding two such nuclei
and examining the conservation of energy with and without
absorption. For this we use a full three-dimensional time-
dependent Hartree-Fock code in which two separate 16O nu-
clei are initialized, given a boost which sets them toward
each other, and are allowed to collide.

In time-dependent Hartree-Fock the kinetic energy of
relative motion of two clusters is not an immediately avail-

able quantity. Instead, it must be deduced using a two-body
analysis of the time-dependent density distribution.

The code first tries to determine whether the system has
separated into two fragments. For this purpose it calculates
the principal axes of the mass quadrupole tensor of the com-
bined system. Then it examines the density along the axis of
maximum quadrupole moment to find whether it shows the
characteristics of two maxima separates by a low-density re-
gion. The point of lowest density along this line then defines
a dividing plane perpendicular to this axis, and two frag-
ments are assumed to exist on both sides of this plane. Cal-
culating the centers of mass of each fragment yields a new
straight line connecting them, which is used to repeat the
process. This is iterated until the definition of the fragment
centers of mass and the dividing plane have stabilized. The
principal result of this analysis are the fragment masses and
charges Mi, Qi, i=1,2, the separation distance R of the frag-

ments, and the relative velocity Ṙ calculated from the values
of R at two successive time steps �for noncentral collisions
the angular momentum of c.m. motion can also be calcu-
lated, but this is of no concern for the present discussion�.

For head-on collisions the energy of relative motion can
then be calculated from the simple formula

Ecm�R� =
1

2

M1M2

M1 + M2
Ṙ2 +

Q1Q2

R
, �17�

where the Coulomb energy is approximated by the expres-
sion for two point charges.

Figure 11 shows a calculation of the relative-motion en-
ergy Ecm�R� for 16O+ 16O at an initial c.m. energy of
125 MeV. An impression of the physical situation is given
by the small insets. The two nuclei are initialized at a dis-
tance of 16 fm, so that they have a distace of at least 5 fm to
travel towards each other before significant interaction sets
in. The quantity Ecm for this “incoming” part of the reaction
is shown in the upper curve. The initialization reduces the
value of Ecm to about 124.80 MeV, but this value stays re-
markably constant with changes below 0.02 MeV down to

FIG. 9. The probability distribution for emitting a certain num-
ber of neutrons after excitation by an extremely short pulse �boost�
of varying strength. The boost strength is given in terms of radial
momentum in units of fm−2. The test case is 16O computed with the
force Skyrme M* in a radial box of 30 fm. The number of absorbing
points Nabs is varied as indicated.

FIG. 10. The detailed time-evolution of the total number of
emitted nucleons after excitation by an extremely short pulse
�boost� with initial radial momentum of 0.08 fm−2. Test case is 16O
computed with the force Skyrme M* in a radial box of 30 fm. The
number of absorbing points Nabs is varied as indicated.

FIG. 11. Center-of-mass energy for the collision of two 16O
nuclei. The energy before collision is shown, as are three cases for
post-collision CM energy, according to the cases described in the
text.
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R=12 fm. This shows that the numerical description of free
propagation through the grid and the two-body analysis work
quite well.

To add to the picture, it should be mentioned that during
the full collision calculation �not only the initial phase� the
total energy decreases by 0.02 MeV, while the total particle
number fluctuates by about 0.01 nucleons.

In the final stages of reseparated fragments, however, the
situation appears quit different. The lower three curves in
Fig. 11 show that Ecm does not stay constant, as it should.
They correspond to different numerical and physical condi-
tions, which do not lead to any differences in the “incoming”
part of the collision.

The curve labeled “small mesh” refers to a calculation on
a grid with 24�24�32 points with a spacing of 1 fm. The
boundary conditions for the wave functions are periodic,
since we use an fast Fourier transform �FFT� method for
representing the derivatives. The time step was 0.2 fm/c. As
seen by the conservation properties above and by the agree-
ment for the incoming phase, this yields sufficient accuracy
for the pure solution of the TDHF equations.

Here we see that for this case Ecm drops by 3 Mev for R
going from 12 to 18 fm. This implies an equivalent uncer-
tainty in the determination of the final energy, which is per-
haps not unaceeptable but certainly annoying.

The possibilty that this effect arises from artefacts in the
Coulomb energy can be excluded. The Poisson equation is
solved with the method of �35� using a double-sized grid
which ensures a correct handling of the long-range behavior.
The monopole approximation used for the estimate �17� has
been tested by including also the quadrupole interaction en-
ergy, whereby �17� turned out to perform sufficiently precise.

Since Coulomb can be ruled out, the remaining possibility
for explaining the effect is direct interference of the wave
functions with their periodic images, and in this respect the
emission of free nucleons again would be the prime candi-
date, since the bound states should decay sufficiently rapidly.
The two additional curves in Fig. 11 show results of tests in
this direction: Making the mesh larger by increasing the di-
mensions to 32�32�44 �with grid spacing remaining at
1 fm, curve labeled “larger mesh”� changes the absolute
magnitude of the effect but the continuing drop in Ecm re-
mains about the same.

On the other hand, adding an absorbing boundary �curve
labeled “absorption”� of 4 cells in each direction reduces the
variation in Ecm considerably: It is close to 1 MeV now. It
appears that the emission of nucleons and their spurious re-
interference with the dynamics inside the computational grid
is a problem for the simulation of heavy-ion collisions as
well.

In the future a careful balance will have to be chosen
between the need for accuracy in the final c.m. energy and
computational efficiency, since adding an absorbing layer
means a considerable increase in computing time. Further
studies concerning the energy and mass dependence are
clearly required.

IX. CONCLUSIONS

We have studied two widely used techniques for simulat-
ing absorbing boundary conditions �imaginary potentials and

masking functions� in the time-dependent mean-field ap-
proach, using as test cases the description of nuclear giant
resonances and large-amplitude nuclear collective motion as-
sociated with significant breakup probabilities. Straightfor-
ward calculation in a finite box with the standard reflecting
boundary conditions yields unwanted echoes in the signal
due to nucleon current reflected from the bounds an reap-
pearing at the nuclear site. This can induce unpredictable
side-effects in large amplitude dynamics. In the analysis of
the giant resonance strength function, these echoes artifi-
cially “quantize” the spectra in accordance with the discrete
spectrum in a finite simulation box, thus missing the smooth
spectral distributions as they emerge from the decay width in
the particle continuum.

A conceptually simple, but extremely costly, solution is to
use huge boxes such that the echoes do not show up within
the observation time �which in turn determines the resolution
of the computation�. A broad palette of elaborate techniques
has been developed to establish continuum solutions in the
linear regime �continuum RPA�. We have investigated two of
them which are easily applicable also in large-scale and
large-amplitude situations. These are absorbing boundary
conditions which aim to remove outgoing flow. The two op-
tions, the absorbing potential and masking function, were
found to be about equally effective, and able to reduce ech-
oes by two orders of magnitude for only moderate computa-
tional cost. It is important that reasonable values of the pa-
rameters associated with the absorbing potential and masking
function are used to ensure efficient absorption. It is found,
however, that the remaining small echoes still give rise to
visible oscillations in the spectra.

For computing spectra in the linear regime, a simpler and
more direct way of smoothing the spectra is achieved by
windowing in the spectral analysis. It was realized by filter-
ing of the given signal in the time domain. That again brings
up a payoff between resolution and expense. The smoothing
has to override the average spectral spacing of the finite box.
Rather large boxes are needed to maintain sufficient sensitiv-
ity in order to see the wanted physical structures in the spec-
tra. It was found finally that a judiciously chosen mix of
moderately absorbing bounds with moderate spectral
smoothing provides the most efficient scheme.

In the analysis of large amplitude motion for the breathing
mode, the absorbing bound technique worked very well, and
the relevant observables, such as number of emitted nucle-
ons, was rather insensitive to the details of the absorption
used. It is clear that the computation of spectra in the con-
tinuum near the emission threshold is probably the most de-
manding application for absorbing boundary conditions. As
little as a remaining percent of reflected particles can still
yield a visible perturbation of the spectra. Other applications,
for which the absorbing were designed originally, are much
more forgiving. For example, the outgoing flow of emitted
particle can be easily computed with a precision of a few
percent which is fully satisfying for that observable and oth-
ers of similar nature �as, e.g., angular distributions�. How-
ever, further applications to resonance spectra call for im-
provement of absorbing bounds.

While our work concentrated on applications to breathing
mode oscillations, our study of nuclear collisions again high-
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lights the importance of absorbing boundary conditions.
Without them, the conservation of energy is badly violated.
Their inclusion improves matters, and indicates that their ap-
plication is widespread in TDMF approaches to diverse
physical scenarios.
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